Markov modelling and parameterisation of genetic evolutionary test generations
نویسندگان
چکیده
Genetic evolutionary algorithm is an effective and optimal test generation method. However, the method to select the algorithm parameters is often ad hoc relying on empirical data. We use Markov-based method to model the genetic evolutionary test generation process, parameterise the process characteristics, and derive analytical solutions for selecting the optimisation parameters. The method eliminates preliminary test generation calibration and experimentation effort needed to select these parameters used in current practice.
منابع مشابه
A New Multi-objective Job Shop Scheduling with Setup Times Using a Hybrid Genetic Algorithm
This paper presents a new multi objective job shop scheduling with sequence-dependent setup times. The objectives are to minimize the makespan and sum of the earliness and tardiness of jobs in a time window. A mixed integer programming model is developed for the given problem that belongs to NP-hard class. In this case, traditional approaches cannot reach to an optimal solution in a reasonable...
متن کاملTechniques for automated and interactive note sequence morphing of mainstream electronic music
ion involves parameterisation and arithmetic, viewing music as parallel continuous parameters upon which arithmetic functions can operate. The parameterisation scheme controls how the music is represented while the arithmetic determines how the data is manipulated. Modelling heuristic composition typically utilises a complex network of rules for recombination which are given probabilities extra...
متن کاملMultiobjective Imperialist Competitive Evolutionary Algorithm for Solving Nonlinear Constrained Programming Problems
Nonlinear constrained programing problem (NCPP) has been arisen in diverse range of sciences such as portfolio, economic management etc.. In this paper, a multiobjective imperialist competitive evolutionary algorithm for solving NCPP is proposed. Firstly, we transform the NCPP into a biobjective optimization problem. Secondly, in order to improve the diversity of evolution country swarm, and he...
متن کاملIntrusion Detection Using Evolutionary Hidden Markov Model
Intrusion detection systems are responsible for diagnosing and detecting any unauthorized use of the system, exploitation or destruction, which is able to prevent cyber-attacks using the network package analysis. one of the major challenges in the use of these tools is lack of educational patterns of attacks on the part of the engine analysis; engine failure that caused the complete training, ...
متن کاملUsing Neural Networks and Genetic Algorithms for Modelling and Multi-objective Optimal Heat Exchange through a Tube Bank
In this study, by using a multi-objective optimization technique, the optimal design points of forced convective heat transfer in tubular arrangements were predicted upon the size, pitch and geometric configurations of a tube bank. In this way, the main concern of the study is focused on calculating the most favorable geometric characters which may gain to a maximum heat exchange as well as a m...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- J. Global Optimization
دوره 51 شماره
صفحات -
تاریخ انتشار 2011